This is an internal Phillips report, and must be handled on that basis. Management approval must be obtained for its distribution outside Phillips Petroleum Company.

RELAPSE-I -- A DIGITAL PROGRAM FOR REACTOR BLOWDOWN AND POWER EXCURSION ANALYSIS

K. V. Moore, L. C. Richardson, J. W. Sielinsky

PHILLIPS PETROLEUM COMPANY

ATOMIC ENERGY DIVISION

NATIONAL REACTOR TESTING STATION
US ATOMIC ENERGY COMMISSION

PTR-803 Issued: September 1966

RELAPSE-I - - A Digital Program for Reactor Blowdown and Power Excursion Analysis (K. V. Moore, L. C. Richardson, and J. W. Sielinsky)

> PHILLIPS PETROLEUM COMPANY

Atomic Energy Division

Contract AT (10-1)-205
Idaho Operations Office
U. S. ATOMIC ENERGY COMMISSION

SUMMARY

RELAPSE is a digital program, coded in FORTRAN IV, which calculates flow, mass inventories, temperatures, pressure, in addition to reactivities and power for a reactor primary system during a reactivity accident or a loss-of-coolant accident. Basically, RELAPSE is a modified version of the FLASH blowdown code.

The primary system is represented as three lumped volumes: (a) a pressurizer, (b) a hot volume, and (c) a cold volume. Pressure dependent coolant pumps and a flow dependent heat exchanger are included in the primary loop.

The reactor core is represented by a two-point heat transfer model and a one-point reactor kinetics model. Three modes of heat transfer are considered along with several types of reactivity functions.

Two-phase coolant flow is calculated with the aid of steam tables covering the range of 1 to 3200 psia. A constant velocity steam bubble rise model is included as part of the two-phase calculations.

Various control options describing reactor scrams, fill systems, and pump shutdown characteristics are available.

ACKNOWLEDGEMENTS

The basis for RELAPSE is the FLASH code developed by S. G. Margolis and J. A. Redfield of Westinghouse-Bettis Atomic Power Laboratory. We wish to thank Dr. Redfield for his special assistance in providing us with a detailed understanding of FLASH.

We also received a great deal of help from the Phillips staff, especially Dr. R. P. Rose, Sid Cohen, G. E. Gruen, and R. J. Wagner.

RELAPSE-I -- A Digital Program for Reactor Blowdown and Power Excursion Analysis (K. V. Moore, L. C. Richardson, J. W. Sielinsky)

CONTENTS

SUMMA	ARY	iii
ACKNO	OWLEDGEMENTS	iv
I.	RELAPSE-I A Digital Program for Reactor Blowdown and Power Excursion Analysis	1
	2. SYSTEM GEOMETRY	1
	3. TYPICAL TRANSIENT	1
	4. TRANSIENT CALCULATIONS	3
II. III.	4.1 Mass and Energy Balances 4.2 Pressure Balance	3 4 5 6 9 10 10 12 13 15
	LIST OF FIGURES	
l.	Equivalent System Geometry	2
	LIST OF TABLES	
I.	Control Card Definitions	16
II.	RELAPSE Data Sheet 1, Control Cards	19
III.	RELAPSE Data Sheet 2, Data Cards	20
IV.	Output Variables	30

I. RELAPSE-I -- A Digital Program for Reactor Blowdown and Power Excursion Analysis (K. V. Moore, L. C. Richardson, J. W. Sielinsky)

1. INTRODUCTION

As part of the Loss of Fluid Test (LOFT) safety analysis effort, the FLASH Code [1] has been revised for the IBM-7040 and the CDC-6600 machines. This version of FLASH, called RELAPSE, can be used for many reactor system safety studies including large reactivity excursions as well as the original FLASH loss-of-coolant and pump-failure accidents. RELAPSE retains most of the calculational features of FLASH, but differs mainly in the reactor kinetics, reactor control options, and input/output form.

RELAPSE treats the reactor system as a core region, a heat exchanger, a main coolant pump, and three specific volumes - the hot leg, cold leg, and pressurizer. The core is treated as a two-point model for power generation, heat transfer, and reactivity generation and as a one-point model for the reactor kinetics, pressure balances and flow balances. Feedback reactivity is determined by the combination of void, temperature, Doppler, xenon, and energy dependent reactivity functions. Fluid discharge claculations through a system leak are based on the Moody method for single- and two-phase flow [2]. The output from the code includes temperatures, pressures, mass inventories, fluid properties, flow, reactivities, power and energy as time dependent variables. This version of RELAPSE should not be considered final since many improvements can be made in both the mathematical models and calculational techniques.

2. SYSTEM GEOMETRY

The reactor system is divided into three basic volumes: (a) the cold leg, which includes the fluid from the heat exchanger to the reactor inlet; (b) the hot leg from the reactor outlet to the heat exchanger; and (c) a system pressurizer connected to the hot volume. Each volume is defined as a simple cylindrical tank. Relative entrance and exit junctions within the volumes are specified by the user to approximate the particular system of interest (see Figure 1). System breaks involving leaks are allowed in any of the three volumes.

The reactor core is treated as an average single-pass hydro-dynamic model with two points for power generation and heat transfer. A two-point hot channel model also is included but does not enter into the total system balance calculations.

3. TYPICAL TRANSIENT

Initially, the system is assumed to be in steady state operation with the coolant water flowing from the cold volume through the core

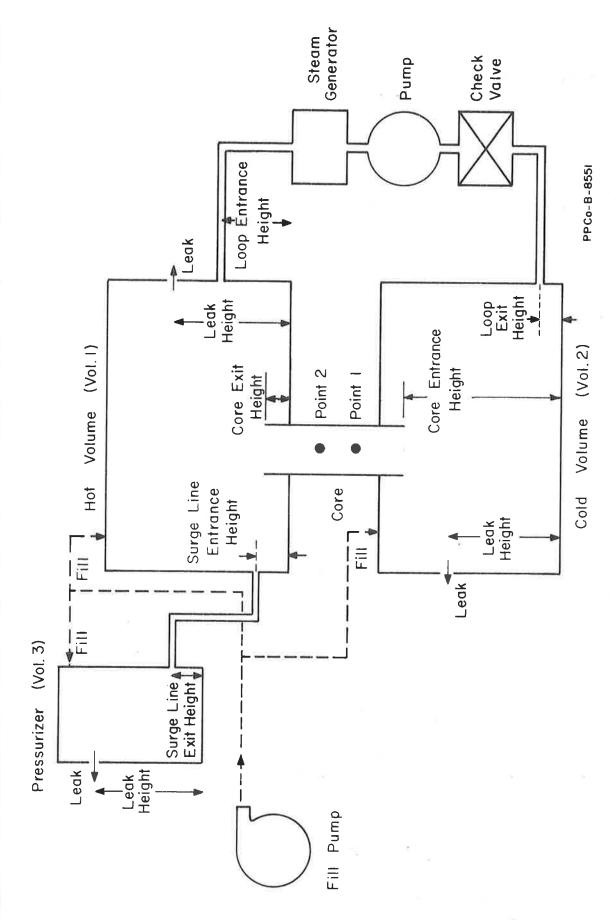


Fig. 1 Equivalent System Geometry.

to the hot volume and then through the heat exchanger and main coolant pumps back to the cold volume. In steady operation there is no flow from the pressurizer. The initial state of fluid in the pressurizer can be subcooled with an air head or saturated with a steam head.

The transient is initiated by any combination of reactivity input, system coolant leak, pump failure or power level changes. Partial control of the transient is available through nuclear scram options on pressure, liquid level, temperature, power level, reactor period, and core flow. Fill water may be injected into any volume if the system is loosing fluid through a rupture. The main pumps are described by a table of head versus flow along with coastdown characteristics. External reactivity is described by a constant velocity control rod and a time dependent table. Leak flow areas are described by a time dependent cubic equation.

During the transient, fluid properties are continuously calculated. Steam formation occurs if the system pressure drops below the saturation pressure. If two phase conditions occur, the fluid is assumed to be a mixture of liquid and bubbles with a steam head. A constant velocity bubble rise model is included to estimate the amount of entrained steam in the fluid.

As the system pressure changes, the net positive suction head to the main pumps also changes. Possibly, the coolant flow may reverse direction in the main loop if not prevented by a check valve. Reverse flow also may occur in the core. The core is cooled by the flow of subcooled water, two-phase mixture, or steam. Heat is transferred by convection to subcooled water, by nucleate boiling, or by film boiling to a steam-water mixture.

Feedback reactivity is generated by changes in coolant density and temperature, by changes in fuel temperature, by Doppler effects, and by possible burnup of xenon poison or some other energy dependent function. Complete mass, momentum, and energy balances are maintained throughout the transient.

4. TRANSIENT CALCULATIONS

Transient calculations are made by advancing the system conditions over a small time increment. The time dependent portion of the differential equations describing the system are expanded into forward finite difference forms. The basic equations for the calculations are as follows.

4.1 Mass and Energy Balances

The mass and energy stored in each volume are calculated from the basic conservation laws. Flow rates and fluid properties are assumed to be constant during a time step. Finite forward difference equations are used to advance the time solution.

The differential equation for mass balance is

$$\frac{\mathrm{d}M_{\dot{1}}}{\mathrm{d}t} = \sum_{\dot{j}=1}^{\Sigma} W_{\dot{1}\dot{j}} \tag{1}$$

where M_{i} is the total mass in volume i and $\text{W}_{\text{i},\text{j}}$ is the flow rate into volume i from pipe j.

The energy equation is

$$\frac{dU_{i}}{dt} = \sum_{j=1}^{N} W_{ij} h_{ij} + Q_{i}$$
 (2)

where U_i is the total energy content of the fluid in volume i, $h_{i\,j}$ is the enthalpy associated with $W_{i\,j}$, and Q_i is a power source or sink in the volume.

The heat exchanger is included in the cold volume as a heat sink. The power removal by the heat exchanger is calculated by a flow dependent equation or determined from an input table of power versus time.

The flow dependent heat exchanger equation is

$$Q_{HE} = \left| \frac{W}{W_o} \right| H_{HE} \left(T_{Hot} - T_{Sec} \right)$$
 (3)

where $T_{\rm Hot}$ is the outlet temperature of the hot volume, $H_{\rm HE}$ is the effective heat transfer coefficient in steady-state full power operation, W is the flow rate of primary coolant, and $W_{\rm O}$ is the initial coolant flow rate.

The term representing the secondary temperature, $T_{\rm Sec}$, is determined internally in the code from the initial steady-state condition

$$T_{\text{Sec}} = T_{\text{Hot}}(o) - \frac{p(o)}{H_{\text{HE}}}$$
 (4)

where p(o) is the initial power.

4.2 Pressure Balance

Pressure in each volume is determined implicitly by requiring the mass of fluid M_{i} with internal energy U_{i} to fill the control volume V_{i} . The enthalpy of volume i is calculated by the relation

$$h_{i} = \frac{V_{i}}{M_{i}} + P_{i} \frac{V_{i}}{M_{i}}$$

$$(5)$$

By using this enthalpy, along with a pressure guess, the specific volume of the fluid is known from the available physical property tables. Thus, the product of the mass and the specific volume must equal the control volume.

$$M_{i} v_{i} = V_{i} \tag{6}$$

In the actual iteration, the pressure is changed by a given increment until successive approximations of $M_{\rm i}v_{\rm i}$ lie just above and below the true value $V_{\rm i}$. Then a linear interpolation on the last two pressures are used to determine the correct pressure. The number of iterations is limited to prevent an indefinite loop. The physical property tables for water cover the range of $1 \le P \le 3206$ psia and $0 \le h \le 4539$ Btu/lb.

4.3 Leak Calculations

Leak calculations are performed on all volumes having non-zero leak areas. If the leak is sharp-edged and the water entering the leak is subcooled, the fluid does not flash. In this case, the mass velocity through the leak is given by the orifice equation

$$G = \sqrt{2g \left(144 \rho\right) \left(P_{\text{source}} - P_{\text{a}}\right)} \tag{7}$$

where $P_{\mbox{source}}$ is the source pressure and $P_{\mbox{a}}$ is the outside pressure.

If the fluid entering the leak is not subcooled, or if the leak is not sharp-edged, choked flow conditions are assumed at the leak throat. The mass velocity is then determined by the Moody correlation which is built into the code as tables of maximum flow, stagnation enthalpy, and fluid enthalpy versus leak pressure (2).

4.4 Fill Systems

Water can be injected into any volume by means of a fill system. This system is actuated, after a specified time delay, by a low-pressure signal, a rupture, or a low-liquid level trip from any specified volume. The actual fill water is delivered by both a constant displacement pump and head dependent pump. The total flow rate is the output of these two pumps.

$$W_{\text{FILL}} = W_{\text{Fconst}} + W_{\text{F}}(P)$$
 (8)

The water from the fill system, with enthalpy $h_{\rm FILL}$, is assumed to mix perfectly with the water already existing in the volume.

4.41 Exit State of Fluid. For an energy balance in each volume, the correct enthalpy, $h_{i,j}$, must be determined for all incoming and exiting flows. The FLASH model, and hence RELAPSE, assumes that the exit state of the fluid through a junction is defined by the state of the fluid in contact with the junction point. In any given volume, the relative heights of entrances and exits are specified as input data. If the mixture level of liquid and entrained steam bubbles is below the junction, then the flow is assumed to be steam. Conversely, if the mixture level is above the junction, the flow is assumed to be pure liquid or two-phase.

4.5 Channel Energy Balance

Energy balances are performed on the first and second point average and hot channels. Heat fluxes and flows are assumed constant during a time step. For flow in the normal direction, the inlet enthalpy to the first point is the exit enthalpy from the cold leg volume. The inlet enthalpy to the second point is the exit enthalpy of the first point. For reverse flow, this sequence is reversed; ie, the inlet enthalpy to the second point is the enthalpy of the hot volume. Perfect longitudinal mixing is assumed for each point.

The energy equation for a single point is then

$$V\rho \frac{dh_{out}}{dt} = W h_{in} - W h_{out} + Q$$
 (9)

or

$$\frac{\mathrm{dh}_{\mathrm{out}}}{\mathrm{dt}} = \frac{\mathrm{h}_{\mathrm{in}} - \mathrm{h}_{\mathrm{out}}}{\tau} + \frac{\phi A_{\mathrm{HT}}}{V \rho} \tag{10}$$

where \emptyset is the heat flux into the coolant, $A_{\rm HT}$ is the heat transfer area, ε is the transport time $(V\rho/W)$, V is the channel point volume, and ρ is the fluid density.

4.6 Plate Equations

Fuel plate temperatures for the first and second point average and hot channels are calculated by an energy balance. The heat generation in the plate is determined by the reactor kinetics routine or a table look-up of power versus time. The energy balance per point assumes a uniform axial heat flux and temperature. This is

$$\frac{Q}{A_{HT}} - \phi_{s} = [(\rho C)_{c} \ell_{c} + (\rho C)_{f} \ell_{f}] \left(\frac{dT_{f}}{dt}\right)$$
 (11)

where ρC is the volumetric heat capacity, ℓ is the thickness of the clad or fuel, subscript c denotes the clad and f the fuel, Q is the power input, $A_{\rm HT}$ is the heat transfer area, $\phi_{\rm S}$ is the surface heat flux, and T is the temperature.

The surface heat flux, ϕ_{S} , is determined by the mode of heat transfer. Thus,

$$\phi_{s} = \overline{H} \left(T_{f} - T_{sink} \right) \tag{12}$$

where \overline{H} , the overall heat transfer coefficient, and T_{sink} depend upon the mode of heat transfer.

For normal convective heat transfer

$$\frac{1}{\overline{H}} = \frac{1}{H} + \frac{\overline{\ell_c}}{k_c} \tag{13}$$

$$T_{sink} = T_{bc}$$
 (14)

$$H = H_0 \left[\frac{W(t)}{W_0} \right]^{0.8}$$
 (15)

where $\overline{\ell_{\text{C}}}$ is the equivalent clad thickness, k_{C} is the clad conductivity, H_{O} is the nominal heat transfer film coefficient, W is the coolant flow rate, and T_{bc} is the temperature of the bulk coolant at the channel outlet.

For nucleate boiling[1]

$$\overline{H} = \frac{k_{c}}{\ell_{c}} \tag{16}$$

$$T_{sink} = T_{crit}(\emptyset)$$
 (17)

$$T_{crit} = T_{sat} + \frac{60}{e^{P/900}} \left(\frac{0.25}{100}\right)^{0.25}$$
 (18)

For film boiling [1]

$$\frac{1}{\overline{H}} = \frac{1}{H_{FB}} + \frac{\overline{\ell_c}}{k_c}$$
 (19)

$$T_{sink} = \max (T_{sat}, T_{bc})$$
 (20)

$$H_{FB} = \max \left\{ H_{min}, H_{FB_0} \left| \frac{W}{W_0} \right|^{0.8}, H_{TB} \right\}$$
 (21)

where H_{min} and $H_{\text{FB}_{\text{O}}}$ are the minimum and nominal heat transfer coefficients for film boiling (input data). H_{TB} is the transition boiling heat transfer coefficient as calculated by the Departure from Nucleate Boiling (DNB) routine [see Equation (31)].

The actual mode of heat transfer is determined by a comparison of the estimated plate surface temperature, $T_{\rm S}{}^{\prime},$ based on the average plate temperature versus the nucleate boiling sink temperature, $T_{\rm crit}$ (defined previously). The estimated surface temperature is

$$T_{s} = T_{f} - \frac{\overline{\ell_{c}}}{k_{c}} \phi$$
 (22)

The modes of heat transfer are then defined as

Convection:
$$T_s' < T_{crit}$$
 (23)

and

$$T_{\text{bc}} < T_{\text{sat}}$$
 (24)

Nucleate Boiling:
$$T_s' = T_{crit}$$
, where $\phi \le \phi_{DNB}$ (25)

and

Film Boiling:
$$T_s' > T_{crit}$$
 (26)

The plate temperature, $T_{\rm f}$, is calculated for a new time step by integrating Equation (11), assuming the heat transfer mode has not changed from the previous time step. Then the actual heat transfer mode is determined and if the mode has changed, the plate temperature is recalculated using the correct heat transfer mode.

4.7 Departure from Nucleate Boiling

The DNB heat flux is calculated from the following correlation[3]:*

$$\frac{\emptyset_{\text{DNB}}}{10^6} = k \sqrt{\frac{h^* - h}{h^* - h_0}}$$
 (27)

$$k = d_1 \left[1 + \left(\frac{2000 - P}{800} \right)^2 \right]$$
 (28)

$$h_0 = d_2 - 0.004(2000-P)^{1.63}$$
 (29)

and

$$h^* = h_g - d_3 h_{fg} - d_4 h_{fg} \left[\frac{300}{h_{fg}} \right] \frac{10^6}{G}$$
 (30)

where d_1 through d_4 are chosen as input, ϕ_{DNB} is the critical DNB heat flux, (Btu/hr-ft²); h_g is the saturated gas enthalpy (Btu/lb); h_f is the saturated liquid enthalpy, (Btu/lb); h_{fg} is h_g - h_f , (Btu/lb); P is the pressure, (psia), and G is the mass flux of the coolant, (lb/hr-ft²). The constants are part of the input data. From this calculation of ϕ_{DNB} , the heat transfer coefficient, H_{TB} is defined as [3]

$$H_{TB} = \frac{\phi_{DNB} - 10^{4} [T_{s'} - T_{crit} (\phi_{DNB})]}{[T_{s'} - T_{sink}]}$$
(31)

^(*) The DNB equations in RELAPSE-I are somewhat different in form than the equations used in FLASH. The particular set chosen for interim use in RELAPSE was published by Westinghouse-Bettis as part of the Shippingport Project and no attempt has been made on the part of Phillips to evaluate the applicability of this form of correlation to fluid conditions representative of blowdown behavior.

4.8 Power Generation

Power generation is determined by either a reactor kinetics calculation or by a tabular input of power versus time. The reactor kinetics equations are solved by a method similar to the IREKIN program (4). The standard reactor kinetics equations are:

$$\frac{\mathrm{dn}}{\mathrm{dt}} = \left(\frac{\beta}{\Lambda}\right) \left[(\rho/\beta) - 1 \right] n + \sum_{i=1}^{\beta} \lambda_i C_i + S$$
 (32)

$$\frac{dC_{i}}{dt} + \lambda_{i}C_{i} = \frac{\beta_{i}}{\Lambda} n, i = 1, 2, ... 6$$
 (33)

where n is the fission power, (ρ/β) is the reactivity input, (β/Λ) is the ratio of effective delayed neutron fraction to neutron generation time, β_1 is the effective delayed neutron fraction for group i, and λ_1 is the decay constant for the delayed neutron precursor C_1 .

Also included as an option in the kinetics code are eleven groups of gamma heat sources:

$$\frac{\mathrm{d}\gamma_{\mathbf{j}}}{\mathrm{d}\mathbf{t}} = \lambda_{\mathbf{j}}\gamma_{\mathbf{j}} = \epsilon_{\mathbf{j}}\mathbf{n}, \ \mathbf{j} = 1, \ 2, \dots \ 11$$
 (34)

where γ_j is the concentration of the jth gamma precursor, λ_j is the decay constant, and ϵ_j is the fraction yield of the precursor, γ_j .

The total power is a sum of the direct fission power and the instantaneous gamma heating. All power is assumed to be generated in the fuel plates and direct gamma heating of the coolant is not considered. The inclusion of the gamma terms allows for a more realistic shutdown transient. The total power, p, is

$$p = n E_{f} + \sum_{j=1}^{L} \lambda_{j} E_{j} \gamma_{j}$$
(35)

where the Ej's are the fraction of power produced in steady state by each production method. If the operational gamma heating is not used, then $E_f=1$ or, with gamma heating, $E_f=0.93$ and $\Sigma E_j=0.07$.

4.9 Reactivity

As input to the reactor kinetics routine, reactivity is developed explicitly as a known function of time and implicitly through core

feedback mechanisms. The explicit input reactivity is calculated from a table of ρ/β versus time and by an equation approximating a control rod. The control rod equation is

$$\left(\frac{\rho}{\beta}\right)_{r} = \left(\frac{\rho}{\beta}\right)_{max} \left[\frac{X(t)}{X_{max}} - \frac{\sin 2\pi \frac{X(t)}{X_{max}}}{2\pi} - \frac{X_{o}}{X_{max}} + \frac{\sin 2\pi \frac{X_{o}}{X_{max}}}{2\pi}\right]$$
(36)

and the rod position is

$$X(t) = X_0 + vt, 0 \le X \le X_{max}$$
 (37)

where v is the velocity of the rod and X is the position. The maximum rod worth, $(\rho/\beta)_{max}$, position limits X_0 and X_{max} , and the velocity are input data and may be chosen to develop either positive or negative reactivity.

Feedback reactivity is determined by the combination of void, temperature, Doppler, xenon, and energy dependent functions. In general, both the hot and average channels are used to determine the void, temperature, and Doppler reactivities. The void reactivity is calculated by density changes in the coolant at four points (first and second points, average and hot channels).

$$\left(\frac{\rho}{\beta}\right)_{v} = \sum_{i=1}^{4} \alpha_{vi} \left(\frac{\rho_{i(t)}}{\rho_{i(0)}} - 1\right)$$
(38)

where $\rho_{\text{i}}(t)$ is the coolant density and α_{vi} is the reactivity void coefficient at point i.

Likewise, the temperature dependent reactivities are:

$$\left(\frac{\rho}{\beta}\right)_{\text{WT}} = \sum_{i=1}^{4} \alpha_{\text{WT}_{i}} \left[\Delta T_{\text{sink}_{i}}\right] \tag{39}$$

$$\left(\frac{\rho}{\beta}\right)_{\text{FT}} = \sum_{i=1}^{4} \alpha_{\text{FT}_i} \left[\Delta T_{m_i}\right] \tag{40}$$

and

$$\left(\frac{\rho}{\beta}\right)_{\text{DOP}} = \sum_{i}^{\mu} \beta_{\text{DOP}_{i}} f(\alpha_{\text{DOP}}, \Delta T_{m_{i}})$$
 (41)

where the subscript WT refers to the coolant temperature and FT refers to the fuel temperature. The Doppler reactivity is calculated for each fuel point from a table and then weighted by $\beta_{\mbox{DOP}_{\mbox{i}}}$ for each point.

The energy dependent model is included for the transient where a more detailed knowledge of the reactivity feedback is not available. Reactivity is assumed proportional to the energy released but limited to a maximum value.

$$\left(\frac{\rho}{\beta}\right)_{E} = \left(\frac{\rho}{\beta}\right)_{E_{\text{max}}} \frac{E(t)}{E_{\text{max}}}$$
 (42)

where the energy ratio is limited by 0 \leq E/E $_{\rm max}$ \leq 1.

Reactivity due to xenon burnup is important for very large transients if a large fission product inventory exists initially. To estimate the reactivity effect of xenon during a transient, the neutron flux is assumed proportional to power and the radioactive decay of iodine and xenon is neglected.

$$\frac{d \left(\frac{\rho}{\beta}\right)_{xe}}{dt} = \sigma_{xe} \frac{\gamma_{xe}}{\beta} \frac{\sigma_{f}}{\sigma_{u}} \phi_{o} \frac{p}{p_{o}} - \sigma_{xe} \phi_{o} \frac{p}{p_{o}} \left(\frac{\rho}{\beta}\right)_{xe}$$
(43)

where σ_f/σ_u is the ratio of fission to capture cross-section for the fuel, σ_{xe} is the capture cross-section of xenon, p/p_o is the relative power, ϕ_o is the initial average neutron flux level, and β is the delayed neutron fraction for dollar units.

The total reactivity input to the kinetics equation is then

$$(\frac{\rho}{\beta}) = f_{\text{table}}(t) + (\frac{\rho}{\beta})_{r} + (\frac{\rho}{\beta})_{v} + (\frac{\rho}{\beta})_{WT} + (\frac{\rho}{\beta})_{FT} + (\frac{\rho}{\beta})_{E} + (\frac{\rho}{\beta})_{xe}$$

$$(44)$$

4.10 Core Loop and Momentum Balance

Core and loop flows are calculated from simplified momentum balances. Included in the balance are the frictional forces, inertial forces, elevation terms, and pump head terms. The total pressure

drop across the core is assumed to be the difference between the hot and cold volume pressures.

$$\Delta P_{\text{core}} = P_{\text{H}} - P_{\text{C}}$$
 (45)

Integrating the basic one-dimensional momentum equations over the core length gives

$$\frac{L_{c}}{144 \text{ A}_{c}g} \frac{dW_{c}}{dt} = P_{H} - P_{C} - F - \frac{\rho_{c} \ell_{HC}}{144}$$
 (46)

where W_C is the core flow rate, ρ_C is the exit density, ℓ_{HC} is the elevation difference between the hot and cold volumes, L_C is the core length, A_C is the flow area, and F is the flow dependent frictional head loss.

For the core, F is assumed to be

$$F = \frac{k_1 W_c}{\rho_c} \left| W_c \right|^{0.8} + \frac{k_2 W_c}{\rho_c} \left| W_c \right|^{47}$$

This form, with the two input constants, k_1 and k_2 , allows for a small degree of freedom in fitting the actual frictional head loss as a function of flow. Likewise, the loop equation is

$$\frac{dW_{L}}{dt} \left(\Sigma \frac{L_{i}}{144 A_{i}g} \right) = P_{H} - P_{C} + \Delta P_{pump} - \frac{K_{L}W_{L}}{\rho_{L}} \left| W_{L} \right| + \frac{\rho_{L} L_{HC}}{144}$$
 (48)

where $\Sigma\,\frac{L_{\bf i}}{144\,\,A_{\bf i}g}$ is the inertial term based on the actual pipe geometry.

The above pressure equations are valid for both normal and reversed flow, and are limited in value to be greater than or equal to an ambient pressure supplied by the user.

5. RELAPSE OUTPUT

The output from the RELAPSE code consists of major and minor editsTand graphs. The major edit is a single page listing approximating 200 quantities. The frequency of this edit is controlled by the user. Nearly all quantities of interest are included in this edit: power, energy, system pressure, flow rates, reactivities,

temperatures, densities, heat transfer modes, heat transfer coefficients, heat fluxes, fluid qualities, head losses, and fluid saturation properties.

The minor edit is a listing of specified quantities for each time increment. The quantities included in the minor edit are chosen by the user from any of the major edit variables and are limited to a maximum of 27. Minor edits occur every 50-time increments.

The graphing portion of the output is done on the system printer following each minor edit. These optional graphs are rather crude but do provide a quick and easy picture of the system response. Any of the minor edit quantities may be graphed.

Normally, the time step size is determined by the type of transient. Realistic values range from 0.0001 to 0.050 seconds for rod ejection studies and up to 0.5 seconds for the latter portion of a blowdown transient. The running speed is approximately 40 time steps per minute on the IBM-7040 and approximately 730 time steps per minute on the CDC-6600.

II. RELAPSE INPUT

l. FORMATS

Input data cards are punched according to the following formats:

- (1) Title card, any alphanumeric data in columns 1-72. The format is 72Al (a).
- (2) Control integer numbers with the format 20(I3,1X).
- (3) Graph control cards with the format 8X, E8.5, 1X, E8.5, 5(1X,I3).
- (4) Data cards with the format of 8X, 6(E8.5, 1X).

The 1X portion of these formats allow each number to be separated by a blank or a comma; integer numbers with the format I3 are written as 002 for 2, 014 for 14, etc. Floating point numbers, with the format E8.5, are written as + 25963+2 for 25.963, - 8430+14 for -8.43 x 1012, etc.

⁽a) NOTE: Multiple cases can be run by stacking sets of input data cards together. The problem is terminated by reading a BLANK title card. Thus, the last card of the data deck must be a blank title card.

Table I

CONTROL CARD DEFINITIONS

-					
Card	Format	FORTRAN Name	Definition		
1	1.		Title card, any alphanumeric characters.		
2	2	NT NQCT	Number of time step cards (1 \leq NT \leq 20). Number of pairs in table of ρ/β versus time or normalized power versus time (1 \leq NQCT \leq 25).		
		NQSGT	Number of pairs in table of heat removal versus time (1 \leq NQSGT \leq 25).		
		NHEAD	Number of pairs in table of pump head versus flow (1 \leq NHEAD \leq 25).		
		NPDCAY	Number of pairs in table of pump coast-down multiplier versus time $(1 \le NPDCAY \le 25)$.		
		NFILL	Number of pairs in table of fill system flow versus head (1 \leq NFILL \leq 25).		
		NI	Number of pairs in Henry's Law Table $(1 \le NI \le 10)$.		
		NDOP	Number of pairs in table of Doppler coefficient versus fuel temperature (0 \leq NDOP \leq 25).		
				NPTYP	Type of power calculations: NPTYP = 000, reactor kinetics; NPTYP = 001, power versus time table.
		NTEMP	Type of initial temperature conditions: NTEMP = 001, same temperature in both volume 1 and 2; NTEMP = 002 volume 1 defined as hot and volume 2 as cold.		
		NDNB	Type of DNB heat transfer: NDNB = 001, average coefficients for both hot and average channels: NDNB = 002, lower limit coefficients for both hot and average channels; NDNB = 003, average coefficients for average channel and lower limit coefficients for hot channel.		

Table I - Cont'd

		FORTRAN	
Card	Format	Name	Definition
2	2	NDPTYP	Type of Doppler reactivity calculation: NDPTYP = 000, no Doppler calculation; = 001, table of Doppler coefficients versus temperature; = 002, equation fit of Doppler coefficient versus temperature.
3-1	2	IQW(1)	Number of quantities included in the minor edit $(0 \le IQW(1) \le 27)$.
3-1		IQW(2)	Identification number for the first quantity in the minor edit (see Table IV for ID's).
3-1		IQW(18)	ID for the 17th quantity, last number of card 3-1.
3-2		IQW(19)	ID on card 3-2 for the 18th quantity, first number of card 3-2.
3-2		IQW(28)	ID for the 27th quantity.
			NOTE: If IQW(1) \leq 18, then card 3-2 is not needed.
14	2	NFIWR	Region for fill water injection.
		NFILR	Region for liquid level trip to actuate fill system.
		NFIPR	Region for pressure trip to actuate fill system.
		NPUPR	Region for pressure trip to turn-off main coolant pumps.
		IPLOTT	Number of graphs following minor edit (0 \leq IPLOTT \leq 27).
		NHTEX	Type of heat removal calculation; NHTEX = 000, table of normalized power versus time; = 001, heat exchanger approxi-
			mated by flow dependent equation.

Table I - Cont'd

Card	Format	FORTRAN Name	
Jara	r Or ma c	Name	Definition
		LVAR	Number of reactor kinetics equations: LVAR = 007, standard set with six de- layed neutron groups; = 018, standard set plus eleven gamma decay equa- tions. In steady state, 7 percent of the power is from gamma heating.
5-1	3	YBTM(l)	Lower limit for y axis of graph 1.
		YTOP(1)	Upper limit for y axis of graph 1.
		NCUV(1)	Number of time dependent quantities appearing on graph 1 (maximum of 4).
		NGRED(1,1)	ID of first quantity.
		NGRED(1,2)	ID of second quantity.
		NGRED(1,3)	ID of third quantity.
		NGRED(1,4)	ID of fourth quantity.
			NOTE: The number of cards used in this set is IPLOTT. A maximum of 27 graphs are allowed with four curves on each graph. All quantities that are graphed must also appear in the minor edit.
5-27	3	YBTM(27)	Etc.

Table II

RELAPSE DATA SHEET 1, CONTROL CARDS

Card	Format	Definition
1 2	1	Title card with any alphanumeric characters in columns 1-72.
2	2	NT, NQCT, NQSGT, NHEAD, NPDCAY, NFILL, NI, NDOP, NPTYP, NTEMP, NDNB, NDPTYP
3-1	2	IQW(1), $IQW(2)$, $IWQ(19)$
3-2	2	IQW(20), IQW(28)
4	2	NFIWR, NFILR, NFIPR, NPUPR, IPLOTT, NHTEX, LVAR
5 - 1	3	YBTM(1), YTOP(1), NCUV(1), NGRED(1,1), NGRED(1,2), NGRED(1,3), NGRED(1,4).
5 - 2	3	YBTM(2), YTOP(2), NCUV(2), NGRED(2,1), NGRED(2,2), NGRED(2,3), NGRED(2,4).
5 - 27		Maximum of 27 cards allowed.

Table III

RELAPSE DATA SHEET 2, DATA GARDS

Remarks	Time step cards; maximum of 20 cards.	Volume 1, hot leg.	Volume 2, cold leg.	Volume 3, pressurizer. NOTE: If the enthalpy < 0 then saturated conditions are assumed.	Volume 1
Cols. 54-61		$Z(1, \mu)$ Leak height (ft)	$Z(2, \mu)$ Leak height (ft)		
Cols. 45-52	*	Z(1,3) Surge line entrance height (ft)	Z(2,3) + 00000+0	WH(2,3) Initial fluid enthalpy (Btu/lb)	
Cols. 36-43		Z(1,2) Loop entrance height (ft)	Z(2,2) Core entrance height (ft)	Z(3,4) Leak height (ft)	
Cols. 18-25 Cols. 27-34 ENDT End time (sec)	XXXL(1) End of internal (sec)	Z(1,1) Core exit height (ft)	Z(2,1) Loop exit height (ft)	Z(3,3) Surge line exit height (ft)	B(1,3) Leak co- efficient
Cols. 18-25 ENDT End time (sec)	XXXNP(1) Number of steps per major edit	ZTOT(1) Total height (ft)	ZTOT(2) Total height (ft)	Zror(3) Total heights (ft)	B(1,2) Maximum leak area (ft2)
Cols. 9-16 TRUP Start time (sec)	XXXDT(1) Time step (sec)	V(1) Total volume (ft3)	V(2) Total volume (ft3)	V(3) Total volume (ft3)	B(1,1) Leak L/D
Card	7	Φ 1	0/	10	11

-
Cont
2
~~
_
- 1
HHH
Le
ᅼ
Tab.
רט

	Remarks Volume 2	Volume 3	Leak area as a function of time: A/Amax = ALIN*t+AQUAD *t2+ACUB*t3, where A < Amax.	Initial conditions. NOTE: H is defined by $Q = H\Delta T$, where Q is the power removal (Btu/hr) and ΔT is temperature differential across the exchanger.	Hydraulic parameters. Units for K factors: flow(W) in lb/sec, ΔP in lb/in.2, density in lb/ft3 NOTE: K factors are computed with exit densities.
	Cols. 54-61			HECOF Heat ex- changer H(Btu/hr- °F)	CVLVE2 Reversed flow valve K factor with valve
Table III - Cont'd	Cols. 27-34 Cols. 36-43 Cols. 45-52 B(2,3) Leak co- efficient			FIM Number of main pumps	CVIVEL Normal flow valve K factor $\Delta P_{\rm v} = K \ W \left \frac{W}{\rho} \right $
Table	Cols. 36-43			WCORE(1) Core flow (lb/sec)	FK1 + 00000+0 (loop K - calculated internally)
		B(3,3) Leak co- efficient	ACUB Cubic coefficient	WH(1,1) Enthalpy vol. 1 (Btu/lb)	CP Surge line K factor
	Cols. 18-25 B(2,2) Maximum leak area (ft ²)	B(3,2) Maximum leak area (ft ²)	AQUAD Quadratic coefficient	TLEV Liquid level in vol. 3 (ft)	CK2 Core K factor 2 $ A \cdot A $ $ A \cdot A $ $ A \cdot A $
	Cols. 9-16 B(2,1) Leak L/D	B(3,1) Leak L/D	ALIN Linear co- efficient for leak area	P(3) Pressure in vol. 3 (psia)	CK1 CK2 Core K factor 1 factor 2 $\Delta P_{core} = K_1 W \left \frac{W}{\rho} \right ^{3} + K_2 W \left \frac{W}{\rho} \right $
	Card 12	13	174	15	91

	Remarks	8	Reactor scram parameters. NOTE: If scram not wanted supply a large number for the delay such as	Major edit lists scram type. These numbers refer to this set of data starting with 1 as a P(1) scram and 12 as a transient time scram. Zero is meant as no scram.
	Cols. 54-61 BPP Back pressure to close check valve (psi) (positive value)		TTPD(3) P(3) delay (sec)	TTPD(6) Scram level 3 delay (sec)
Table III - Cont'd	Cols. 45-52 TLI Loop inertia $\frac{L_{i}}{144g}\frac{A_{i}}{A_{i}}$		QTPD(2) Pressure scram vol. 3 (psia)	QTPD(6) Liquid level scram vol. 3 (ft)
Table	Cols. 36-43 PI Surge line inertia) (2) A(ft ²)	$\widehat{\cdot}$	TTPD(2) P(2) scram delay (sec)	TTPD(5) Scram level 2 (ft)
	Cols. 18-25Cols. 27-34Cols. 36-43PSKCIPTPump KCoreSurge linefactorinertiainertia(pump in- operative)L(ft)144g (ft/sec²) A(ft²)	K Specific heat ratios for gas (air) head in pressurizer	QTPD(2) Pressure scram vol. 2 (psia)	QTPD(5) Liquid level scram vol. 2 (ft)
	Cols. 18-25 PSK Pump K factor (pump in- operative)	HP Elevation of vol. 3 over 1 (ft)	TTPD(1) Time de- lay on P(1) scram (sec)	TTPD(4) Scram level 1 delay (sec)
	Cols. 9-16 CVLVE3 Reversed flow valve K factor with valve closed	CL Elevation of vol. 1 over 2 (ft)	QTPD(1) Pressure scram vol. 1 (psia)	QTPD(4) Liquid level scram vol. 1 (ft)
	Card 17	18	91	00

	_
	۲
	Ċ
	$\overline{}$
7	Cont
'	_
	ł
ŀ	_
i	_
Ė	-
	•
	ψ
-	Ť
	റി
-	Lap
-	v
r	\neg

Remarks			Fill system; Set delay = +10000+5 if option not wanted.		<pre>Pump data; Set delay = +1000045 if option not wanted.</pre>
Cols. 54-61	TTPD(9) Power scram delay (sec)	TTPD(12) Time delay after transient start (sec)			
Cols. 45-52	QTPD(9) Relative power scram	QTPD(12) + 00000+0 (Transient start time from card set 6 used)	Time delay for fill system turn on from tran-	(sec)	D3 Pump shut- down delay after tran- sient start
Cols. 36-43	TTPD(8) Flow scram delay (sec)	TTPD(11) Period scram delay (sec)	TLPD1 Pressure delay (sec)	IPR on 4	TDELAY Pressure pump shut- down delay (sec)
Cols. 27-34	QTPD(8) Core flow scram (lb/sec)	QTPD(11) Reactor period scram (sec-1)	PTRIP1 Pressure trip point to turn on fill system (psi)	Region NFIPR on card set 4	PTEST Pump shut- down pres- sure (psia)
Cols. 18-25	TTPD(7) AP scram delay (sec)	TTPD(10) Temperature scram delay (sec)	TLLD1 Level turn on delay (sec)	FILR on 4	
Card Cols. 9-16 Cols. 18-25	QTPD(7) Core ΔP scram (psi)	QTPD(10) Core exit temperature scram (°F)	ZLLl Liquid level for fill system turn on (ft)	Region NFILR on card set 4	CD PSH Coefficient Manufa- Ky, f = tures net [1-Ky(Pd-P) ²] positive suction (ft).
Card	21	22	23		24

П

_	
7	Ξ
-	
	-
+	_
ς.	
4	_
~	≺
~	_
	8
	۰
TTT	0
-i-	i
	٦
-	٦
-	
0	Y.
_	Н
רלפידו	j
_	3
- U	J
E	Н

	Remarks	Table I, Henry's Law function; NI pairs	(1 < N1 < 10). Supply as many cards as needed.		Main pump head NHEAD pairs $(1 \le \text{NHEAD} \le 20)$	Pump coastdown multiplier	start with zero time and end with a large time.	Head dependent fill system flow NFILL pairs (1 to 20), include zero head and +3200+4
Table III - Cont'd	2 Cols. 54-61	83 33	$NI = Pw + \sum_{i=1}^{N} H_i S_i + N_j$	where Pw = vapor pressure of water $N = N_1 P_1 S_1 H_1$	Flow nd large	Time		Head
	Cols. 9-16 Cols. 18-25 Cols. 27-34 Cols. 36-43 Cols. 45-52	H3			Head Flow Head Provide entries for negative flows and positive flows	Multiplier		Flow
	34 Cols. 36-1	SI(2) S2			Flow tries for neg lows	Time		Head
	Cols. 27-	HI(2) H2	Pd	where	Head Provide entrie positive flows	Multiplier		Flow
	Cols. 18-25	SI(1) S1 Concentra-	tion (cc/kg at STP		HEAD(2) Main pump flow (gpm)	PDCAY(1) 00000+0	time after shutdown (sec)	FILL(2) Head (psi)
	Cols. 9-16				HEAD(1) Main pump head (ft)		coastdown multiplier	FILL(1) Fill system flow (gpm)
	Card	25-1	25=4		26-1	27 ° 1	27-7	28-1
					01.			

	4
٠.ر	J
-	
	•
-	J
- :-	4
_ (3
- 5	3
5)
	•
~	١
_	•
	٠
TTT	4
	٠
-	4
	ļ
-	ı
	ł
- 0	١
· ·	,
_	ı
9	ı
	•
_C	ŧ
	Ċ
Tab	ï
_60	٨
<u> </u>	ı
	ı

	Remarks	If NPTYP = 0, reactor kinetics; = 1, relative power; NQCT pairs (1 to 20), include a large time	Heat exchanger table NQSGT pairs (1 to 20), include a large time	Doppler reactivity tables; NDOP pairs (0 to 20), if NDOP = 0, then these cards. are not included.	
e.	Cols. 54-61	Time	Time	Temperature	PATMO Compartment pressure (psia)
TABLE III - COME, a	Cols. 45-52	Reactivity or power	Power	Coefficient	THETA +50000+0 (Weighting factor in calculation of surface temperature)
UHORH H	Cols. 36-43	Time	Time	Temperature	HBDNB Past DNB nominal con- vection coefficient (Btu/hr-ft2
	Cols. 18-25 Cols. 27-34	Reactivity or power	Power	Coefficient	NFILL Head de- pendent fill system enthalpy (Btu/lb)
lk:	Cols. 18-25	QCT(2) Time after transient start (sec) start with \$\delta 000000000000000000000000000000000000	QSGT(2) Time after transient start (sec)	DOPLE1(2) Fuel temperature (°F)	HCDP CD fill enthalpy (Btu/lb)
	Card Cols. 9-16	QCT(1) Reactivity (\$) or re- lative power (\$ \neq 0)	QSGT(1) Heat ex- changer power removal (Btu/sec)	DOPLE1(1) Doppler coefficient (\$/°F)	WCDP Constant displace- ment fill pump flow (gpm)
	Card	29-1	30.7	31 11 11 11 11 11 11 11 11 11 11 11 11 1	ಜ್ಞ

Table III - Cont'd

	Remarks		Flow search increme			
	Cols. 54-61				A4 Point 2 flow area (ft ²)	AHT(4) Point 2 heat trans- fer area (ft2)
TANTA III - COUL. A	Cols. 45-52	SPF4 Hot chan- nel point 2, flow factor after fill systems turn on		ZCORE Half core length (ft)	A3 +00000+0 (interpass area)	AHT(2) Point 1 heat transfer area (ft ²)
1	Cols. 36-43	SPF2 Hot chan- net point l flow factor after fill systems turn on		ZL4 Equivalent clad thick- ness (ft)	A2 Point l flow area (ft2)	FF4 Point 2 hot channel
	Cols. 27-34	ZDEAD Core exit height in vol. 1 after fill systems turn on	WPFLI Surge line increment (lb/sec)	ZL3 Fuel half thickness (ft)	RHOCM Fuel den- sity x heat capacity (Btu/ft3)	FF2 Point 1 hot channel flow factor
	Cols. 18-25	ASRG Surge line area (ft2)	WLTI Loop flow increment (lb/sec)	ZL2 Actual clad thick- ness (ft)	RHOCC Clad den- sity x heat capacity (Btu/ft3)	HSTAR Forced con-Minimum vection film co- nominal film efficient coefficient beyond DNB (Btu/hr-ft2- (Btu/hr-ft2- °F)
	Cols. 9-16	TPN Leak area opening time (sec)	WCFLI Core flow increment (lb/sec)	ZLl Coolant channel half thick- ness (ft)	CKC Clad con- ductivity (Btu/hr- ft-°F)	HSTAR Forced convection nominal film coefficient (Btu/hr-ft2~ °F)
	Card	33	34	35	36	37

-	C
	•
	Ľ
_	_
- 1	_
	٠.
- 7	
`	_
	۰
- 1	
- 15	_
EEE	_
- !	
- 1-	-
(1)
`	~
7077	┪
	٦
- 1	4
(rì
-	٧,

	Remarks	NOTE: Physics factors are applied only to hot channel calculations.		Reactivity energy function.	Xenon properties. WOTE: Use only for large power excursions since equations are only approximate. Both decay of xenon and iodine are neglected.
	Cols. 54-61	AF4 Point 2 axial physics factor	ALFAV(4) Void co- efficient point 2 hot (\$\% void)		
Table III - Cont'd	Cols. 36-43 Cols. 45-52	AF2 Point 1 axial physics factor	ALFAV(3) Void co- efficient point 1 hot (\$\/\phi\ void)		
Table		RF4 Point 2 radial physics factor	ALFAV(2) Void co- efficient point 2 average (\$\pi'\ph' void)	EXPRD Maximum reactivity for AE (\$)	Sigfu of Ratio of for fuel
SIL	Card Cols. 9-16 Cols. 18-25 Cols. 27-34	RF2 Point 1 radial physics factor	ALFAV(1) Void co- efficient point 1 average (\$/% void)	ENGDM Energy de- lease above steady state for maximum re- activity (MW-sec)	GAMX Ratio Xe yield to delayed neutron fraction $\frac{7x}{k}$
	Cols, 18-25	PHIZ2 PHIZ4 RF2 Point 1 in- Point 2 in- Point 1 itial heat itial heat radial flux (Btu/hr-ft2) (Btu/hr-ft2) factor	FLUX Initial reactor neutron flux (n/cm²-sec)	EXPRM Maximum reactivity for total E (\$)	SIGX Xenon capture cross section,
	Cols. 9-16	PHIZ2 Point 1 in- itial heat flux (Btu/hr-ft2)	PMW Initial reactor power (MW)	ENGYM Total energy re- lease for maximum re- activity (MW-sec)	ROXE Initial xenon re- activity (\$) nega-
	Card	38	39	04	<i>γ</i> 1

able III - Cont'd

	Remarks	Control rod.				Doppler; if NDPYP = 0, then these cards are not required.
	Cols. 54-61		BOVL Ratio of effective delayed neutron fraction to	$\frac{\beta}{\ell}$ (sec ⁻¹)	QL Accuracy limits on IREKIN Lower +10000-3 +10000-2	DOPX1(6) +000000+0
Table III - Cont'd	Cols. 36-43 Cols. 45-52		S Source S = 1 Po		QL Accuracy lim Lower +10000-3	DOPX1(5) +00000+0
Table		RODV Velocity	ALFT(4) coefficients Point 2 hot (\$/°F)		ALFF(4) efficients Point 2 hot (\$/^F)	DOPX1(4) table Point 2 hot
	Cols. 27-34	RODXM Maximum position	ALFT(3) temperature co Point 1 hot (\$\^{\circ}F)		ALFF(3) temperature coeff Point 1 hot (\$/°F)	DOFX1(3) Doppler Point 1 hot
	Card Cols. 9-16 Cols. 18-25 Cols. 27-34	RODXO Initial position	ALFT(2) reactivity ter Point 2 average (\$\psi^r\$)		ALFF(2) reactivity tempe Point 2 average (\$/'F)	DOPX1(2) factors for Point 2 average
	Cols. 9-16	RODK Rod worth (\$)	ALFT(1) Coolant res Point 1 average (\$/°F)		ALFF(1) Fuel react Point 1 average (\$/'F)	DOPX1(1) Weighting Point 1 average
	Card	42	43		74.44	45

6	7	
٠	-	
	1	2
	ξ	7
7		5
	ı	1
1	_	1
H		1
-	1	1
<	Ţ	3

	Remarks	Extra	DNB coefficients; average conditions.	DNB coefficient; lower.
D OTTO TITE OTTO	Cols. 54-61	DOFX2(6) +00000+0		
	Cols. 27-34 Cols. 36-43 Cols. 45-52 Cols. 54-61	DOFX2(5) +00000+0		
	Cols. 36-43	DOPX2(4) 0++++0+	CDNB(1,4)	CDNB(2,4)
	Cols. 27-34	DOFX2(3) +00000+0	CDNB(1,3)	CDNB(2,3)
	Cols. 18-25	DOPX2(2) +00000+0	CDNB(1,2)	CDNB(2,2)
	Cols. 9-16	DOPX2(1) +00000+0	CDNB(1,1)	CDNB(2,1)
	Card	94	47	84

END CARD - The data deck must end with a BLANK card. This card is read in as a new title card and tested for blanks. If this card is completely blank, the problem is terminated by an EXIT call. If the title card is not blank, a new set of data cards for the next case is read in by the machine.

29

Table IV

OUTPUT VARIABLES

Idenity Number	FORTRAN Name	Quantity Definition	Units
002	Q	Power crimer	Normalized
003	P(1)	Pressure, volume 1	psia
004	P(2)	Pressure, volume 2	psia
005	P(3)	Pressure, volume 3	psia
006	P(2)-P(1)	Pressure across core	psi
007	WCORE,	Core flow	lb/sec
008	WLOOP	Loop flow	lb/sec
009	AREALT	Total leak area	ft ²
010	RLEAK	Total fluid mass lost out of leak	lb
Oll	QLEAK	Total fluid energy lost out of leak	Btu
012		Power	MW
013		Power	Btu/hr
014		Heat exchanger power removal	Btu/hr
015		Heat exchanger power removal	Normalized
016		Heat exchanger power removal	MW
017	HECOF	Heat exchanger overall H	Btu/sec-°F
018	TEMHE	Heat exchanger fluid temperature	°F
128	PX(7.,2)	Fill system mass flow	lb/sec
204	ENERGY	Total energy release after tran- sient start	MW-sec
205	DENERG	Energy released above steady state conditions	MW-sec
206	TIMÏŔ	Time based from transient starts	sec

Table IV - Cont'd

Idenity Number	FORTRAN Name		Qu	antity Definition	Units
			SATURAT	ION PROPERTIES	
019	PSAT(1)			Saturation pressure	psia
020	TSAT(1)			Saturation temperature	°F
021	HF(l)			Saturation fluid enthalpy	Btu/lb
.022	HG(1)	Vo	lume 1 〈	/ Saturated gas enthalpy	Btu/lb
023	VF(l)			Specific volume of fluid	ft ³ /lb
024	VG(1)	3 ³ 3		Specific volume of gas	ft ³ /lb
025	PSAT(2)	1		14. <u>5</u>)	
026	TSAT(2)				
027	HF(2)			_	
028	HG(2))	Volume	2	
029	VF(2)				
030	VG(2)				
031	PSAT(3)	(
032	TSAT(3)				
033	HF(3)	{	Volume	3	
034	HG(3)				
035	VF(3)				
036	VG(3)				

Table IV - Cont'd

Idenity Number	FORTRAN Name	-	Quantity Defi	ntion	Units
	F	LUID	PROPERTIES IN EACH	VOLUME	
037	CAPM(2,1)	ſ		Volume 1	
038	CAPM(2,2)	{	Total fluid mass	Volume 2	lb
039	CAPM(2,3)	l		Volume 3	
040	GM(2,1)	ſ		Volume 1	
041	GM(2,2)	1	Total steam mass	Volume 2	lb
042	GM(2,3)			Volume 3	
043	GMB(2,1)	ſ			
0,44	GMB(2,2)	{	Mass of entrained	steam	lb
045	GMB(2,3)		bubbles; as above		
046	WM(2,1)	1		Volume 1	
047	WM(2,2)	{	Liquid mass	Volume 2	lb
048	WM(2,3)			Volume 3	
049	U(2,1)	ĺ			
050	U(2,2)	{	Total energy	as above	Btu
051	บ(2,3)				
052	ZM(l)	ſ			
053	ZM(2)	{	Mixture level	as above	ft
054	ZM(3)			2	
055	ZL(1)	ſ			
056	ZL(2)	Į	Liquid level	as above	ft
057	ZI(3)				

Table IV - Cont'd

Idenity Number	FORTRAN Name	Quantity Definition	Units
058	WV(2,1)		
059	WV(2,2)	Liquid volume as above	_{ft} 3
060	WV(2,3)		
061	GV(2,1)	(
062	GV(2,2)	Steam volume as above	ft ³
063	GV(2,3)		
064	WH(2,1)	ſ	
065	WH(2,2)	Liquid enthalpy as above	Btu/lb
066	WH(2,3)		
067	GH(2,1)		
068	GH(2,2)	Steam enthalpy as above	Btu/lb
069	GH(2,3)		,
129	PX(8,1)		
130	PX(8,2)	Leak throat as above pressure	psi
131	PX(8,3)		
132	WI(1)		
133	WT(2)	Water temperature as above	°F
134	M1(3)		
135	GT(1)		
136	GT(2)	Steam temperature as above	°F
137	GI(3)		

Table IV - Cont'd

Idenity Number	FORTRAN Name	Quantity Definition	Units
138	l/VLiQ(l)		
139	1/VLTQ(2)	Liquid density as above	lb/ft ³
140	1/VLIQ(3)	(Note: Specific volumes rather densities are used internally.)	than
141	l/VGAS(l)		
142	1/VGAS(2)	Steam density as above	lb/ft ³
143	1/VGAS(3)		
		PROPERTIES BETWEEN VOLUMES	
070	W(1,1)	Core to volume 1	
071	W(1,2)	Volume 1 to loop	
072	W(1,3)	Mass flow (Volume 1 base) Surge line to volume 1	lb/sec
073	W(1,4)	Volume 1 to leak	
074	W(1,5)	Fill system to volume 1	
075	H(1,1)		
076	H(1,2)		
077	H(1,3)	Enthalpy Same as mass flow, volume	Btu/lb
078	H(1,4)	l base	
079	H(1,5)	Le Company of the Com	

Table IV - Cont'd

Idenity Number	FORTRAN Name	_	Quantity Defi	inition	Units
080	X(1,1)	1)	
081	X(1,2)		Fluid quality defined		
082	X(1,3)	<	as H = H _f	Same as mass flow, volume	
083	X(1,4)		H _g - H _f	l base	TEBB
084	X(1,5)	l	5 -		
085	W(2,1)			Loop to volume 2	
086	W(2,2)			Volume 2 to core	
087	W(2,3)		Mass flow (Volume 2 base)	Surge line to volume 2 = 0	lb/sec
088	W(2,4)			Volume 2 to leak	
089	W(2,5)	l		Fill to volume 2	
090	H(2,1)	1			
091	H(2,2)				
092	H(2,3)	<	Enthalpy (Volume 2 base)	Same as mass flow, volume	Btu/lb
093	H(2,4)		,	2 base	
094	H(2,5)				
095	X(1,1)	1.	.266		
096	X(2,2)				
097	X(2,3)	{	Fluid quality (Volume 2 base)	Same as mass flow, volume	dimension- less
098	X(2,4)		,	2 base	TC00
099	X(2,5)				

Table IV - Cont'd

Idenity Number	FORTRAN Name		Quantity Defi	nition	Units		
100	W(3,1)	1					
101	W(3,2)						
102	W(3,3)	{	Mass flow (Volume 3 base)	Volume 3 to surge line	lb/sec		
103	W(3,4)			Volume 3 to leak			
104	W(3,5)	ŧ		Fill to volume 3			
105	H(3,1)	(
106	H(3,2)						
107	H(3,3)	<	Enthalpy (Volume 3 base)	Same as mass flow, volume	Btu/lb		
108	H(3,4)	l	, , ,	3 base			
109	H(3,5)						
110	X(3,1)	1					
111	X(3,2)		ži.	Same as mass			
112	X(3,3)	1	Fluid quality (Volume 3 base)	flow, volume 3 base	dimension- less		
113	X(3,4)						
114	X(3,5)	L					
FLUID HEADS							
115	PX(4,4)	Core	acceleration				
116	PX(5,4)	Loop	acceleration				
117	PX(4,5)	Core	friction				
118	PX(5,5)	Loop	friction				
119	PX(4,6)	Core	e elevation				

Table IV - Cont'd

Idenity Number	FORTRAN Name	Quantity Definition	Units
120	PX(5,6)	Loop elevation	
121	PX(6,1)	Pump inlet pressure	
122	PX(6,2)	Volume 1 to pump ΔP	
123	PX(6,3)	Pump head pressure	
124	PX(6,4)	Check valve loss	psi
125	PX(6,5)	Pump to Volume 2 ΔP	
126	PX(6,6)	Pump elevation	
127	PX(7,1)	FILLysystem head	
144	CH(2,1)	Into point l average	
145	CH(2,2)	Out of point l average	
146 .	CH(2,3)	Into point 2 average	
147	CH(2,4)	Out of point 2 average	
148	CH(2,5)	Enthalpy Into point 1 hot	Btu/lb
149	CH(2,6)	Out of point 1 hot	
150	CH(2,7)	Into point 2 hot	
151	сн(2,8)	Out of point 2 hot	

Table IV - Cont'd

Idenity Number	FORTRAN Name	Quantity Definition	Units
152	VSP(2,1)		
153	VSP(2,2)	Al .	ft ³ /lb
154	VSP(2,3)		
155	VSP(2,4)	Specific Same as	
156	VSP(2,5)	volume enthalpy	
157	VSP(2,6)		
158	VSP(2,7)		
159	VSP(2,8)		
160	EXITX(2)	Point 1 average	
161	EXITX(4)	Point 2 Quality average	dimension-
162	EXITX(6)	Point 1 hot	less
163	EXITX(8)	Point 2 hot	
164	TH20(2)		
165	TH20(4)	Fluid Same as	°F
166	TH20(6)	temperature quality	
167	TH20(8)		
168	T(2,2)	Point 1 average	
169	T(2,4)	Average fuel Point 2 temperature average	°F
170	T(2,6)	Point I hot	
171	T(2,8)	Point 2 hot	
		Till Control of the C	

Table IV - Cont'd

Idenity Number	FORTRAN Name	Quantity Definition	Units
172	TS(2,2)	1	
173	TS(2,4)	Füeltelement. Same as	°F
174	TS(2,6)	temperature fuel tem-	
175	TS(2,8)		
176	DNPR(2)		
177	DNPR(4)	Same as	Btu/hr-ft ²
178	DNPR(6)	DNB heat flux fuel temperature	
179	DNPR(8)	Į.	
180	UEDI(1)	(
181	UEDI(2)	Overall heat Same as	Btu/hr-ft ² ~ °F
182	UEDI(3)	transfer co- fuel tem- efficient perature	
183	UEDI(4)	Permonte	
184	PHI(2)		
185	PHI(4)	Average heat Same as	Btu/hr-ft ²
186	PHI(6)	flux in fuel tem- coolant perature	
187	PHI(8)		
188	ରୁ(2)		
189	Q(4)	Average heat Same as	Btu/hr-ft ²
190	Q(6)	flux in fuel tem- fuel perature	
191	ସ(8)		

DISTRIBUTION

- P. M. Arnold
- J. P. Lyon
- W. E. Nyer
- L. L. Leedy
- L. E. Taylor
- J. F. Kaufmann, ID (3)
- J. E. Anderson
- N. R. Anderson
- S. D. Anderson
- V. F. Baston
- F. L. Bentzen
- T. J. Boland
- G. O. Bright
- G. F. Brockett
- H. D. Curet
 - J. Dugone
- L. J. Finnegan
- R. W. Garner
- S. R. Gossmann
- G. E. Gruen
- J. C. Haire
- G. H. Hanson
- 0. M. Hauge
- D. L. Hoskins
- S. O. Johnson
- K. R. Katsma
- W. E. Kessler
- W. B. Lewis
- G. B. Matheney
- E. W. Mellow
- K. V. Moore (10)

Tomoreus of the

- R. G. Morrison
- C. F. Obenchain
- R. D. Peak
- D. L. Perry
- L. C. Richardson
- R. P. Rose
 - F. Schroeder
- J. W. Sielinsky (2)
- N. K. Sowards
- M. E. Thomas
- R. J. Thompson
- D. N. Tillit
- J. M. Waage
- R. J. Wagner
- D. A. Watson
- L. N. Weydert
 - N. Wilde
- T. R. Wilson

Technical Library (10)

